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ON QUADRATURE CONVERGENCE OF EXTENDED 
LAGRANGE INTERPOLATION 

WALTER GAUTSCHI AND SHIKANG LI 

ABSTRACT. Quadrature convergence of the extended Lagrange interpolant 
L2n+l f for any continuous function f is studied, where the interpolation nodes 
are the n zeros -ri of an orthogonal polynomial of degree n and the n + 1 zeros 
fjj of the corresponding "induced" orthogonal polynomial of degree n + 1. It 
is found that, unlike convergence in the mean, quadrature convergence does 
hold for all four Chebyshev weight functions. This is shown by establishing 
the positivity of the underlying quadrature rule, whose weights are obtained 
explicitly. Necessary and sufficient conditions for positivity are also obtained 
in cases where the nodes -i and irj interlace, and the conditions are checked 
numerically for the Jacobi weight function with parameters a and y3. It is con- 
jectured, in this case, that quadrature convergence holds for jaic < 12 111 < 2 

1. INTRODUCTION 

If 7rn( (; w), n > 1, denotes the nth-degree orthogonal polynomial on 
[-1,1] with respect to a positive weight function w, and (Lnf)(.) the Lagrange 
interpolation polynomial of degree < n interpolating f at the zeros {Ti} of 7rn) it 
is a well-known result of Erdbs and Turan [2] that Lnf converges in the mean to f 
for any continuous function f. That is, 

(1.1) lim 11 f - Lnf Kw= 0, all f E C[-1, 1], 

where 11 g K = (f,, E 2 (t)w(t)dt) 1 Attempts have been made in the past to 

obtain an analogous result for the extended Lagrange interpolant (L2n+lf)(.) in- 
terpolating f at 2n + 1 points - the n points {Ti} and n + 1 additional points 
{f} suitably chosen. A particularly interesting choice of the fj, first suggested by 
Bellen [1], is given by the zeros of *n+ v, the polynomial f*n+ (1) = rn+ ; 7r2w) of 
degree n + 1 "induced by Urns i.e., orthogonal relative to the weight function 7r2w 
(cf. [5]). Concrete results have only been obtained in the case of Chebyshev weight 
functions. The one of the second kind, w(t) = (1 t2)1/2, is particularly easy, since 
in this case {fT} U {fi5} are precisely the zeros of UnTn+1 = U2n+l (cf. [1]), and 
one is led back to the Erd6s-Thran result. For all other three Chebyshev weight 
functions, however, one of us [3] has shown that mean convergence cannot hold for 
all continuous functions. 
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It may be interesting to ask the same question for what Erd6s and Turain called 
quadrature convergence. In their scenario, that would mean 

(1.2) lim [fX(t) - (Lnf)(t)]w(t)dt = 0, all f E C[-l, 1], ne*oo 1 
which is obviously true, since the integral over Lnf is just the n-point Gauss quad- 
rature sum relative to the weight function w. Is it true that the same holds for 
extended interpolation, 

(1.3) limj [f (t) - (L2n+1f)(t)]W(t)dt = 0, all f E C[-1, 1]? ne*oo 1 
The answer is yes, if the underlying quadrature rule has all weights positive, as 
follows from a classical result of Polya [6]. We will show in ?2 of this note that this 
is indeed the case, for all four Chebyshev weight functions, and in the process also 
determine explicitly the weights of the quadrature rules involved. Moreover, it will 
be shown in ?3 that positivity also holds if the nodes Ti and 5j interlace, provided 
the Gauss weights for the weight function w satisfy certain inequalities. The latter 
are checked numerically for the Jacobi weight function w(a',3) (t) = (1 - t)o (1 + t)I 
and evidence is produced suggesting that the quadrature weights in question are 
indeed positive if ll <2 1, /1 < 1 

One could be tempted to take the zeros of 7rn+l as the additional nodes 'j since 
interlacing is then guaranteed. However, the quadrature rule implied by (1.3) is 
then simply the (n + 1)-point Gaussian rule for w (all nodes Ti receive weight zero), 
and we are back again to the Erd6s-Turan result! 

2. CHEBYSHEV WEIGHT FUNCTIONS 

The weights of the interpolatory quadrature rule implied by (1.3) are given by 

(2 .1) Ai- (t -Ti) 1rn' (T 
I t )r+ 1 (ri ) w (t)dt, i =1, 2, . .. , n; 

(2.2) = f- (t - )7rn (,j)r +1 (t) w(t)dt, j 1, 2,... ,n+ 1, 

where 7rn) = irn( ; w) and #n+1() = 7rn+l(. ;7rnw). The rule has degree of exact- 
ness equal to 2n. For reasons indicated in the Introduction, it suffices to look at 
Chebyshev weights of the first, third, and fourth kind. 

2.1. Chebyshev weight of the first kind. Here the weight function is w1 (t) = 

(1 - t2)-1/2, and irn is the Chebyshev polynomial of the first kind, 

(2.3) 7rn (t) = Tn (t) , Tn (cos 0) = cos nO, 

whereas *n+l is given by [3] 

(2.4) tn+l(t) = Tn+1(t)-2 Tn-i(t), n > 1. 

Theorem 2.1. For wi(t) = (1-t2)-1/2, the quadrature weights Ai and [tj in (2.1), 
(2.2) are given by 

(2.5) Ai = 3Z i = 1,2, ... ,n; 
3nm 
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(2.6) 2r= 1 3 , j=1,2,... ,n?1, 
n ? 9 8- 9 j 

where fj are the zeros of #ni. All weights are positive. 

Proof. It follows easily from (2.3) and (2.4) that 7r$ (Ti) = n(-1)'-/sin0i and 

kn+l(Ti) = 3 (-l)'sin0j, where Oi = (2i - 1)7r/2n, so that 
2~~~~~~~~~~~~~ 

(2.7) 7r$(Ti)#n+1i(Ti) = - n. 
It remains, for Ai, to evaluate the integral 

Tn(t)[Tn+l(t) 2 Tn-l(t)] Wi tdt. 
-1 ~ ~~~~~ w 1(t)dt 

Since Ti is a zero of Tn, the integral, by orthogonality of the Tm, reduces to 

- 

1 f Tnz() Tn-1(t)wj(t)dt, 

which in turn is equal to - 2. This follows by observing, if n > 1, that 

Tn (t) 
- = 2Tn~ (t) + lower-degree terms, 

by orthogonality, and by using 

T2(t)wi(t)dt = 2' m > 1. 

For n = 1, the reasoning is the same except for the factor and divisor 2 in the 
last two formulae, which must be replaced by 1. The result (2.5) now follows 
immediately. 

To evaluate the constant in the denominator of (2.2), we let 

= cos If 

and obtain from 

kn+l (cos 0) = cos(n + 1)0- 1 cos(n - 1)0 

by differentiation and the addition formula for the sine 

(2.8) n+1() = {(n + 3) sin nj cos Oj + (3n + 1) cos n sin O}. 
2 sin Oj 

Since 

cos(n + 1)Oj - 
1 cos(n - 1)Oj = 0, 

and using here the addition formula for the cosine, we find 

1 cos nOj cos O 
sin i 3 sin Oj 

Together with (2.8), this yields after a simple computation 

7rn(t)*n/+1(t) =2 Tn( j) {T 3 1 _ +3n?+1} 
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It is known from [3, Eq. (2.7)] that TYn(t) = 9(1-t2)/(9-8t2) for t = 'ij. Therefore, 

(2.9) ~~~~~~~3(9n?+3 -8nf~j) 3 n? 9+ 3 ) (2.9) rn (ryj) 
f 

n + 1(7j )= 2(9 - 8r ) 2 9n -_8rz) 

For the integral in (2.2), we proceed as follows: 

j1 Tn(t) [Tn+l(t)- Tn-1 (t)] wi(t)dt=2 J T1 (t)wi(t)dt=r. 

The first equality is a result of the orthogonality of the Tm and the fact that 

Tn~1 (t) - 2 Tn (t) - 2Tn(t) + lower-degree terms. 
t - 

Combining (2.10) and (2.9) yields (2.6). 
The positivity of the quadrature weights is an immediate consequence of -1 < 

i5j < 1 for the puj, and trivial for the Ai. 

Since En> Ai + Ent+ ,fj = 7r, it follows from Theorem 2.1 that the nodes j 
must satisfy 

n+l 

(2.11) E =31. 
j=1 n+ 

9-8'i32 

2.2. Chebyshev weights of the third and fourth kind. Because of the remark 
at the beginning of ?3.2 below, it suffices to examine the Chebyshev weight function 
of the third kind, W3(t) = (1 - t)-1/2(1 + t)1/2, for which the relevant polynomials 
are 

(2.12) 7rn(t) = Vn(t), V (cos) = cos (n? 2) 

2 

and [3, Eq. (2.17)] 

(2.13) kn+l(t) = Tn+1(t) - 2 Tn(t), n > 1. 

Theorem 2.2. For W3(t) = (1 t)-1/2(1 +t)1/2, the quadrature weights Ai and [tj 
in (2.1), (2.2) are given by 

(2.14) i = 27r ?1 + Ti i = 1,2,... ,n; 

(2.15) ,uj = 3 4 )2? j=1,2,... ,n;+ 

(5 -24.2 ? 

where Ti and fj are the zeros of 7rn and ,n+l, respectively. All weights are positive. 

Proof. From (2.12) and (2.13), one obtains by an elementary computation that 
7r'(Ti) = (n+ ? ) (-l)i-1/ (cos Oi sin Oi) and *n+1(Ti) = 3 (-1)i sin 2 Oi, where 
0i = (2i - 1)7r/(2n + 1), so that the constant in the integral of (2.1) is 

(2.16) 7rn$(Ti)kn+1(Ti)=-T 1 2?? 
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The integral itself is 

In= Vt) [Tn+l(t) - Tn(t)]W3(t)dt 

/1 V(t) 1 
= j t _( ) (1 + t)[Tn+l(t) - Tn(t)]wl(t)dt. 

t-T, ~~~~2 
Since, by the recurrence relation for the Tm, we have 

(1 + t)[Tn+l(t) -1 Tn(t)] = 2 Tn+2(t) + 3 Tn+l(t) - Tn-l(t)i 

we can use the orthogonality of the Tm with respect to wi to simplify: 

I n j1 Vn(t) Tn_ (t)w (t)dt. 

Now Vn (t) has leading coefficient 2 , if n > 2, so that 
1 

In = Tn2_(t)w2(t)dt n > 2. 

The same result holds also for n = 1. Combining it with (2.16) yields (2.14). 
Letting as before j = cos Qi, putting t = cos 0 in (2.13), and differentiating with 

respect to 0 gives 

n + 2 sin (n + )j 3n + 2 cos (n + ?) 
4 ?~~~ 
4 sin 10~ 4 Cos Oj 2J2 

Since 

cos(n + 1)i - 2cos no = -o 
this simplifies to 

( Vn(fj) (n +2 1 + l?j 
n+1 4 \+ -T 3n?2. 

From [3, Eq. (2.22)] it is known that 

Vn ()=(1 + t)(5 - 4t) - 

so that the constant in the integral of (2.2) becomes 

4 - 2fj 

3 +5 -4-~j (2.17) 7rn(tj)<n+l(tj) = 2 _ + ^ i 
2 1?+-~ 

The integral, on the other hand, is 

/1Tn+l(t) -2 Tn(t) n)W(dt 

which, since 

whic e T (t)- T(t) - Vn(t) + lower-degree terms, 
t - 

reduces to 
1 

Vn2(t)W3(t)dt = 7r, n >1 

Together with (2.17), this yields (2.15). 
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The positivity of the weights is evident from (2.14), (2.15). D 

Analogously to (2.11) one finds, after an elementary calculation, that 

n+1 

(2.18) S l1f - 

5 - 4-aj 

3. JACOBI WEIGHT FUNCTIONS 

For more general weight functions, in particular the Jacobi weight function 
w(t) = w(af3)(t), where w(a13)(t) = (1 - t)a(1 + t)', we have only conjectural 
results based on numerical experimentation. We are especially interested in cases 
where the nodes {Ti} and {?y} interlace, 

(3.1) Tn+l < Tn < Tn < Tn-1 < ... < T2 < T1 < T1 

We shall assume in this section (in slight contrast to ?2) that the polynomials 7rn 
and -kn+l are monic. 

3.1. Quadrature weights for interlacing nodes. We assume, as in ?2, that n 
is given and fixed. Our computations are based on the following theorem. 

Theorem 3.1. Let w be any (positive) weight function for which the nodes {Tij}, 
{}j } (defined in ?2) interlace. Then the quadrature weights Ai and ftj in (2.1), (2.2) 
are all positive if and only if 

(3 .2) 
A 

7r (r r+l r = 1, 2, . .. , n, 

where A9 are the Christoffel numbers of the n-point Gaussian quadrature rule for 
the weight function w, and 11 7rn 11 = f!1 ir(t)w(t)dt. 

Proof. We first show that the interlacing property implies ftj > 0. It is clear from 
(3.1) that 

(3.3) 7rn(tj)tn/+l(di) > 0, j = 1,2, ... , n +1. 

Thus the constant in the denominator of (2.2) is positive. In the integral that 
remains, the integrand is a monic polynomial of degree 2n. Its (2n)th derivative 
divided by (2n)! is therefore constant equal to 1, and the n-point Gauss formula 
with remainder term yields 

1 
rn(t)itn?1(t) 

w nd= AG 7rn(Tk)fin?l(Tk) 
X lnt)7n1t w(t)dt = E AkG 

/1 t-~~~~i ~k=1 Tk -Tj 

1 

+ j 7rn(t)w(t)dt = fl Irn 

since 7rn (Tk) = 0 for all k. Therefore, 

(3.4) a 7rn+ (l) i =1,2, ... ,n+ 1, 

and the positivity of the ftj follows from (3.3). 



QUADRATURE CONVERGENCE OF EXTENDED LAGRANGE INTERPOLATION 1255 

Similarly, for the Ai we have 

P ii) *n+i(t)w(t)dt = i n Iir 

so that from (2.1) 

(3.5) A\i = At~ + 11 
r'(),nl() i 1,2 .... In. 

Now, however, interlacing implies 

7rn'(Ti)fn+1 (Ti) < 0, i = 1, 2, ..., In, 
so that Ai > 0 for all i if and only if (3.2) holds. C 

3.2. Numerical results for the Jacobi weight function. For w(t) - w(a,) (t) 
it suffices to consider / > a > -1, since an interchange of a and / only changes 
the sign of the argument t in 7rn (t) and *n+ (t), hence the signs of the zeros Ti and 
A, and the weights Ai and ftj in (2.1), (2.2) remain the same, as is easily seen. 

In order to check the positivity of the weights Ai and ftj numerically, we used 
Theorem 3.1 and examined, first of all, whether interlacing of the zeros holds, and 
if so, whether or not the inequalities (3.2) are valid for all n up to some large limit 
(below we take n < 160). For computational purposes we found it convenient to 
write these inequalities in the form 

(3.2') A/ >/3/3/v i = 1 2, ... , n, n ~~n+1 

11 ITi -Tk| I 1ITi - _j 

k=1 j=1 

kAi 

where the /3's are the coefficients in the recurrence relation 

(3 6) 7T +l (t) = (t -o> av) (t-F1,M or-l _(01 ) v = 0, 1, 2, ...I 
*ro (t)=1, i7ri (t) = 0 

for the polynomials 7r,( ) = r, ( ; w( 'AO)). To generate these coefficients, and with 
them the polynomial lrn and its zeros Ti, we used the routines recur and gauss in 
[4]. Similarly for the polynomial fn+, where we used the routines indp and gauss. 
All calculations were done in double precision on a Sun SPARCstation IPX, using 
Fortran Version 2.0, for n = 1(1)160. We found that interlacing and/or positivity 
fails for a <-- 1and a > 1, and also for- 2 < a < 1 and /> 1. On the other 2 2 - 

hand, there is strong evidence for both interlacing and positivity to hold if ll < 

101 < 2. Both may even hold for somewhat larger values of a and /, as suggested 
in Fig. 3.1, where they seem to hold in the triangular-like region, and its reflection 
with respect to the diagonal ar = /, bounded on the left by the line ae =-2, below 
by ar = /, and on top by the dashdotted line (for 1 < n < 40), the dashed line 
(for 1 < n < 80), and the solid line (for 1 < n < 160). We say "seem to hold" 
since interlacing and the inequality (3.2') were verified numerically only for discrete 
points in the (aE, /)-plane spaced apart by .1 in most of the region, and by .001 (in 
the /-values) near the top of the region. We also verified the failure (for some n) 
of either interlacing or (3.2') for a =- - .01 and / = - (.1)1, as well as for 
a= / = 1(.1)2. It seems safe, therefore, to state the following conjecture. 



1256 WALTER GAUTSCHI AND SHIKANG LI 

5 ~~~~0 0.5 
alpha 

FIGURE 3.1. Positivity of quadrature weights for the Jacobi weight 
function w( 'A) 

Conjecture 3.1. For the Jacobi weight function w(t) = w(a)(t) the quadrature 
weights Ai and ftj in (2.1), (2.2) are all positive if (ca, A) is in the square I a< K1 

K 1~~~~~~~~~~~~~~~~~~~~~~2 
101 < 2- 

The positivity expressed in Conjecture 3.1 has been proved in ?2 at the four 
corner points of the square. 
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